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ABSTRACT

The energy of the Wilson-Fowler spline through twenty data sets is compared with that of
five other splines through the data. It is concluded that the WF-spline is sometimes better

and sometimes worse than a parametric cubic spline. Areas for further research are

indicated.
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Wilson-Fowler Spline Energy Comparisons

1. Introduction

1.1. Background. The Wilson-Fowler spline (WF-spline) was introduced in
the early 1960's [FoWi66] as a means for passing a smooth curve through a planar set of
design points: (xj, y;), i=1,...,n. The WF-spline has been used in the APT [ITR67] N/C
system ever since the TABCYL (tabulated cylinder) was introduced to allow point-defined

curves.

This past decade has seen the development of many CAD/CAM systems, most of
which contain some sort of spline entity. The most common of these is the B-spline curve,
whose component functions are (usually cubic) B-splines [deBo78] in some parameter t.
Such a spline will not, in general, coincide with a WF-spline through the same data points.
Thus arises the need to compare WF-splines with other splines. The original intent of this
study was to answer the question: "Is the WF-spline better than an ordinary parametric
cubic spline?" [A negative answer might call for a rethinking of the way parts are defined

by DoE and its contractors.]

1.2. Energy as a basis for comparison. The original cubic spline arose as
a mathematical model for a draftsman's spline. Here a thin beam is constrained to pass
through the data points and the location of its center line at equilibrium is sought. The

elastica is the ideal spline, which minimizes the total energy

(1.1) E = JSxs)2ds,

where s is arc length, S is the total length of the curve, and «(s) is the local curvature. If

we regard the data as defining a function, y = y(x), then
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(1.2) ds = V(1 + [y'(x)]2) dx,
and
(13) k() = y(x) /(1 +[y'(P2)>2,

so the energy integral (1.1) becomes
a8 E= L PR+ YOOR? ox

If one makes the simplifying assumption that [y'(x)]? is everywhere so small relative to one

that the denominator of (1.4) can be ignored, one obtains the "linearized" energy

15) B = e oo ox .
It is well known [deBo78, p.63] that the function that minimizes E| subject to the
constraint of passing through the data is the natural cubic spline . This function y(x) is a
cubic polynomial on each interval [x;,X;, ], the pieces are joined so that y is continuous and
has continuous first and second derivatives, and it satisfies the free-end conditions : y"(x,)

= ¥"(Xp) = 0. [One can similarly define cubic splines that satisfy fixed-end conditions :

y'(x1) =d; y'(xp) = dy ]

One of the motivations for developing the WF-spline was to obtain something
closer to the true elastica by introducing a local coordinate system (see Figure 1) on each
segment, with the independent variable U in segment i running along the chord joining
(x;y;) with (X;,1,Y¥i,1)- In such a coordinate system, it was hoped, the cubic polynomial

v(u), representing the deviation from the chord, would have a value of
(1.6) E, = _/uiui+1 [v"(u)])2 du
that is closer to the true energy (1.1) of the segment than if the original independent variable

X had been retained. Thus it seems natural to use the true energy as the measure of

comparison between WF- and other splines.
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2. Comparison Splines

2.1. Parametric piecewise cubics. Let 0 =1, <t; < ... <1, be preselected

parameter values such that a parametrized curve P(t) = (x(t), y(t)) passes through the i-th
datapointat t =ti :

2.1) Pt) = (x(t), yt) = (y) = P, i=1,...n.

Such a curve is a parametric piecewise cubic curve if each component function is a cubic
polynomial in t on each subinterval [t;,t;,1]. Parametric piecewise cubics have the
advantage of being invariant under linear coordinate changes [deBo78, p.319]. They also

allow vertical tangents, which is impossible for ordinary piecewise cubic curves. It can be

shown [Frit79] that a WF-spline is a parametric piecewise cubic in the cumulative chord

length parametrization :

(2.2)

U, = U + Li' i=1,...,n'1 ,
where L; = V[(Xi,1-%)2 + (¥i,1-Yi)?] is the length of the i-th chord. The component
functions x(u) and y(u), however, turn out to be merely continuous. They have
discontinuities in the first and second derivatives at the data points, even though the curve

they describe has continuous tangent and curvature.

A parametric cubic spline (PC-spline) is a parametric piecewise cubic whose com -
ponent functions are cubic splines. That is, X(t) and y(t) have continuous first and second
derivatives. It is possible [Frit82] to introduce a new parametrization t = t(u) for a WF-
spline so that the transformed component functions (x(t),y*(t)) = (x(u(t)),y(u(t))) have

continuous derivatives with respect to t. This reparametrization takes the form
2.3) t=1tu) = t+K(u-u), uelyuy,l,

where the U, are as in (2.2),
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2.4)
t'l+1 = ti + ki (Ui+1 - Ui) . i=1 ,...,n-1 .

and the k; are fixed constants chosen to make the derivatives continuous. Note that, due to

the linear nature of (2.3), the result will be a parametric piecewise cubic in the new
parameter t. It is not possible, in general, to make x* and y* have continuous second

derivatives, so that a WF-spline is not a PC-spline.

Since we do not use arc length as the parameter for our spline, we must use the

relations
2.5) ds = V([XMR +[y®]2) at
and
X'(t) y"(t) - y'(t) x"(t)
(2.6) K(t) = & - S

(XM + [y )2 )=

to compute the true energy (1.1) as

Q2.7 E = 2, / ™ (XYY xT)2/ (X 2+ y 2)52 dt .

2.2. v-splines. In order to allow for the application of local tension at the data
points, Nielson [Niel74] defined a v-spline to be the function f(t) that interpolates given

data (t;, f;), i=1,...,n , and minimizes the functional

ey Bl = nirerd + Tovirwe .,
where the v; are fixed (nonnegative) tension parameters . We recognize the first term as
being the linearized energy (1.5) that is minimized by the cubic spline, so a v-spline will
generally have only first derivative continuity. In fact, a v-spline is characterized by the
Jjump conditions

(29) f"(ti+) - f"(tl') = Vi f'(t,) ’
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from which we see that the ordinary cubic spline is the special v-spline with v; = 0,

i=1,....n.

A paramemic v-spline is a parametric piecewise cubic, each of whose component
functions is a v-spline (with the same v-values for each component). A parametric v-spline
has continuous tangent and curvature [Niel74]. A PC-spline is a special parametric v-
spline with v; = 0, i=1,...,n. It can be shown [Frit85] that a WF-spline is a parametric v-
spline, provided one takes the jump conditions (2.9) as the defining relation and drops the
restriction v;2 0. Thus, all of the splines of interest to us are v-splines, for a suitable

choice of parametrization and v;.

One may define a uniformly-shaped v-spline to be one with v;=v, i=1,...,n. Thus,
a PC-spline is a special uniformly-shaped v-spline with v=0. It is of interest to compare
the energy of the WF-spline and the PC-spline with that of the optimal uniformly-shaped v
spline (OUSN-spline). This is the uniformly-shaped v-spline that has the minimum value
of the true energy E as computed from (2.7). [We have chosen this v-spline simply
because it is computable via a univariate optimization algorithm and gives some indication

of the improvement possible over a PC-spline. There is no reason to believe that choosing

all v; equal is a good idea, but we have not attempted minimizing over all possible v;-

values.]

3. The Tests

3.1. The test data. The twenty data sets employed in these tests were as

follows:

SIN1: This is the sample data in [FoWi66]; namely, y; = 2-sin(x;) , for 28
uniformly-spaced x-values in [0,37/2]

SIN2: This is every third point from SINI1.

-5-
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QCIR1 : This is a set of uniformly-spaced points on the quarter circle with radius 1.5
and angles in [0,90°). (The points were read in polar coordinates, at 5°
increments, and converted to cartesian coordinates internally.)

QCIR2: This is every other point from QCIR1.

WRM! :  This is a constructed data set used by W. R. Melvin when he was testing his
algorithm [Melv82] for computing a WF-spline.

SF1,SF21: These are two constructed data sets used by S. K. Fletcher as part of her
spline testing procedure [Flet83].

FNFk, k=1, ..., 51: This is a series of five test sets constructed by the author. (They
were originally invented to visually demonstrate the derivative discontinuities
of the WF-spline component functions, since most "reasonable” data sets yield
derivative jumps smaller than 10-3.)

RPN!:  This data set was constructed by the author so that (U;+7.99, X;), with U; given
by (2.2), is the RPN14 data set of [FrCa80].

BMK1!: This is a set of data that has been use by LLNL as a benchmark for vendor-
supplied splines. The points are taken from a pair of tangent ellipses and
contain one inflection. They are given in polar coordinates at 2° increments.

BMK2!l: This is a subset of BMKI, retaining its original character.

JJi,IMj: These are five actual design contours. All but the last are very similar to

BMK1.

3.2. Parametrizations. We have mentioned previously two "natural”
parametrizations for splines. The first is the cumulative chord length parametrization (2.2),
which will be called the natural parametrization. The second is the parametrization (2.4)
required to give the WF-spline component functons continuous derivatives, called the WF

parametrization. The five splines compared with the WF-spline in this study were the PC-

1 These data are listed in the appendix.
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spline and OUSN-spline using each of these parametrizations and the ordinary (non -

parametric) cubic spline.

3.3. Boundary conditions. In order to completely determine a parametric v-
spline, it is necessary to specify some sort of boundary conditions (BC). The BC
employed in these tests were specified tangents (xX'(ty), y'(ty)) and (X'(t,), ¥'(t,)) . Since
a WF-spline is determined simply by end-slopes, there is some arbitrariness in the choice
of the magnitudes of the boundary tangent vectors. We choose to use the formulas

X'(ug) = Ly /[(x2-X4) + Sy:(y2y4)] .
(3.1)

y'(uy) = Syx(wq) ,

and their analog at u,, which arise naturally when one represents a WF-spline as a
parametric piecewise cubic [Frit79]. (In (3.1), Ly and S, are the length and slope of the
first chord.) These BC are scaled appropriately for the transformation to the WF

parametrization.

For the sine data, two different sets of BC were used. One is the "correct”
boundary slopes: S;=2, S,=0. The other is the "default" BC, namely that each boundary
slope match that of the circle through the three end points. (Note that this is close to, but
not the same as, the default BC of [FoWi66, pp.21-22].) For the other data sets, a single

BC was chosen, making a total of 22 tests in all.

4. Test Results

The results of these tests, as run on a CRAY-1 using single precision arithmetic, are
given in Tables 1 and 2. The default BC are indicated by "Def.". The notation "N0SQ"

means the curve has a zero normal (vertical slope) at (X;,y) and a zero slope at (X,,,Yp)-

Similarly, "S2S0" indicates an intital slope of two and a final slope of zero. All reported
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energies were computed using a 50-panel Simpson's rule to approximate each of the n-1
integrals in (2.7). (Numerical tests indicate that the result is probably accurate to at least
five decimal places.) The "optimal v", Vopt» Was computed by subroutine LCLMIN
[Haus72], with a requested final interval length of 10-3. (Tests showed that the results are
relatively insensitive to this convergence criterion.) Further details on the computations

may be found in [FrSp85].

Table 1 contains details on the WF-spline through each of these data sets, with the

indicated BC. Where possible, the ordinary cubic spline was also obtained, and its energy

E, computed via (1.4). The other quantities in the table are the total arc length and energy
of the curve; K., the ratio of the largest and smallest k; in (2.4); Vg, and vp,,, the

largest and smallest v;-values, when represented as a v-spline in the WF parametrization.

Table 2 compares the WF-spline with the four other parametric v-splines discussed
in Section 3.2. The quantity AE = E - Eys will be positive if, and only if, the WF-spline
has the smaller energy. (Due to the probable accuracy of the integrals, AE is given only to
one significant figure if it is smaller than 106 in magnitude.) The value of Vopt 1§ also

given for each of the OUSN-splines. In case K;,=1, no reparametrization was necessary,

and the last three columns have been left blank.



SIN1
SIN1
SIN2
SINZ2
QCIR1
QCIR2

SF1
SF2
FNF1
FNF2
FNF3
FNF 4
FNF5
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28
28
10
10
19
10

5250
Def.
S2S0
Def.
NOSO
NOSO
Def.
Def.
Def.
S1s1
S1s1
S1S51
5181
5181
Def.
Def.
Def.
Def.
Def.
Def.
Def.
Def.

s W w W w W

N
NN
w

O M OH PO W P s

Table 1. Results for WF-splines

E

.7339
.6346
.7360
.0508
.26242
.29672
,——— 3
.06964
.769 4
.56574
.74224
.099 4
.19 4
-—=3
.188 5
.10568
.66136
.62786
.23226
.17646
.03526
.2664

Ewr

L1337
. 6341
.7497
.0156
.0472
.0472
. 9150
.7826
.0648
.4088 1

arc

length

7.

9

NN NN

. 6652 14

.2239 1

.2661 1
.5654
.5641
.5427
.5451
.4049
.5449
.2664 1

9506
. 9055
7.
.9023
.3562
.3562
.4966
.9263
. 6100
. 738

.524

. 6315 16.
.779
.3066 16.
.059

.2650
.2649
. 6008
. 6382
.4864
.7003
.298

9116

034

881

T T L N T - Y T T T o T e R T

I

.0075
.0075
.0462 -
.0494 -
.0000
.0000
.1945
.1070
.0429
.0838
.2505
.9302
.3239 -
L3777 -
.1551 -
.0006
.0097
.0001
.0002
.0003
.0008
.0003

-5.
-5.
14.
.37
-0.
-0.
-3.
-3.
-3.
-5.
-6.
-9.
10.
10.
38.
.26
-1.
-0.
-0.
-0.
-0.
-0.

14

-0

56
56
44

00
00
56
16
10
63
15
56
08
13
65

03
07
08
13
42
27

.00
.00

.51
.10
.49
.70
.61
.80
.94
.05
.01
.04
.01
.01
.00
.00

2 This is the "natural” spline. (Simulations of vertical slope yielded astronomical energy

values.)

3 Could not compute spline: two data points have same X-coordinate.
4 The "natural” spline has smaller energy, also greater than the WF-spline.
5 This is the "natural” spline. (Default BC gave energy ca. 1.7x107.)

6 This is the "natural” spline. (Default BC gave energies in excess of 3000, due to a
nearly vertical end slope.)
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SIN1
SINI1
SIN2
SINZ2
QCIR1
QCIRZ2

SF1
SF2
FNF1
FNF2
FNF3
FNF4
FNF5

$250
Def.
5250
Def.
NOSO
NOSO
Def.
Def.
Def.
S1s81
S1s1
S151
S151
S1s1
Def.
Def.
Def.
Def.
Def.
Def.
Def.
Def.

O O O O O O O U W W N Kr P =B O & B HF W w wWw

. 7337

. 6341

. 7497

.0156
.0472

.0472

. 9150
.7826
.0648
.4088
.6652
. 6315
.2239
.3066
.2661
.5654
.5641
.5427

.5451
.4049
.5449
.2664

F. N. Fritsch

Table 2. Energy Comparisons

Natural parametrization

AE for

=-1.
-6.
+2.
+2.

v=0

1E-4
1E-5
SE-2
9E-2

. E-7
.9E-6
. 9E-2
.2E-4
.1E-4
.5E-3
.1E-2
.6E-1
.0

.1

.%E-4

E-8

.0E-6
. E-9
. E-9
. E-9
. E-8
. E-9

AE for

-1.
-1.
+1.

+1

Vopt

8E-4
5E-4
6E-2
.5E-2
E-7
.8E-6
.1E-2
.9E-3
.9E-3
.5E-3
.9E-2
.5E~1
.1

.2

.9E-3
. BE-8

.9E-6

. E-9

. E-9

.E-11

E-9

Vopt

-1.
.28
.37
.15
.05
.10
.13
.06
.41
.93
.03
.10
.62
.67

15

.73
.05
.31
.02
.02
.03
.07
.05

AE for

WF parametrization

v=0

.2E-4-1
.5E-5-1
.0E-2+1.
.2E-2+8

7 Results identical to those for natural parametrization to all digits given.
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AE for gy

Vopt

.9E-4 -1.18
.7E-4 -1.26

0E~2 -4.41

.2E-3 -5.04

.4E-2 +0.64
.2E-4 -1.21
.8E-3 -1.69
.2E-3 -1.75
.6E-2 -0.29
.2E-1 +9.12
.0E-1+17.0

.6E-1+18.2

.5E-3 -1.30
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5. Observations and Conclusions

5.1. The majority of the v-values given in the tables are negative. This means that

the curve is "looser” than the corresponding parametric cubic spline. It also means that the

curve may not minimize functional (2.8).

5.2. The WF-spline usually has a smaller energy than the ordinary cubic spline, as

predicted [Fowl61]. The only exception is the SIN2 data with specified boundary slopes
(see Table 1).

5.3. For "realistic" data sets, the WF-spline appears to be as good as, or
marginally better than the PC-spline. Furthermore, the WE-spline component functions

have extremely small derivative discontinuities for such data.

5.4. For one data set (SIN2) the WF-spline is better than both the PC-spline and
the OUSN-spline8 in either parametrization. For two sets (WRM and RPN) it is better than
both in the WF parametrization, but worse than both in the natural parametrization. For
another set (JM2) it is (marginally) better than both in the natural parametrization, but
worse than both in the WF parametrization. For one (SF1) it is better than PC but worse
than OUSN in both parametrizations. For two (FNF1, BMK2) it is better than the PC-
spline only in the natural parametrization. In all these cases except WRM and RPN, the five
parametric splines are so similar as to be indistinguishable on the scale of a plot.

Comparing Figures 2 and 3, for example, there is no obvious reason why the WF-spline

should be better for one than the other.

5.5. On the other hand, there are some data sets (FNF 3-FNF 5) for which the WF-

spline is much worse than the PC spline, and the natural parametrization is significantly

8 This is possible, since the WF-spline is definitely pot uniformly shaped.

11-
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better than the WF parametrization for the same choice of v. This is clearly illustrated by
Figures 4-9, in which the six splines through the FNF4 data set are seen to be clearly

different.

5.6. Considering the amount of energy reduction achievable over the PC-spline, it

is probably not worth the effort to compute V.

6. Open Questions

It is clear that much more work is needed to supply the "why?" for the conclusions

of the previous section. Some of the open questions include the following.

6.1. Why is the WF-spline so good on the SIN2 data and so poor on the FNF
data? For what types of data sets can we expect the WF-spline to be good?

6.2. Since we observed such a dramatic change in energy and curve shape with

parametrization in the FNF data sets, it might be worth investigating "optimal para -

metrizations” for v-splines.

6.3. We have not investigated at all the effect of the magnitudes of the boundary

tangent vectors on the energy of the curve.

6.4. The FNF data are really five representatives of a parametrized family of data

sets (see Appendix), the parameter being p, the magnitude of the abscissae of the third and
fourth points. It is not evident from the data presented in Table 1, but there are really only
two distinct v-values, due to the symmetry of the data. Their values, together with the
values of p and NIT, the number of iterations of Melvin's algorithm [Melv82] required for

computing the WF parameters, for the FNFk data sets are given in the following table:

-12-
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k vl Vo \Z

1 1.0 -2.49 -5.63
2 0.5 -6.15 -2.70
3 0.1 -9.60 +0.61
4 0.01 -10.08 +1.80
5 0. -10.13 +1.94

Among the questions that suggest themselves are:

NIT

3

15

a. If the value of p € (0.5,1.0) at which v,=v, were chosen, how would the energy of

the WF-spline (which would be uniformly shaped) compare with that of the OUSN-

spline?
b. What happens when v,=0?

c. Why isn't NIT monotonic?
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Appendix. Listing of the Test Data.

WRM:
These four points are: (0, 2), (0.5, 1.5), (1, 1), (1,0).
SEL:
These five points are: (5,0), (4,1), (3,4), (1,5), (0,5).
SE2:
These seven points are: (-2.5, 1), (-2,2), (-1, 2.5), (0, 2.75), (1,2.5), (2,2),
(2.5, 1).
ENFk, k=1,..,05:
These six points are: (-5, 2), (-3, 3), (-l 2), (M -2), 3, -3), 5, -2), where
Ki=1, Hp=0.5, H3=0.1, py=0.01, ps=0.
RPN:
These nine points are: [ X; Yi
1 0. 0.
2 0.000027 0.1
3 0.043722 0.189935
4 0.169183 0.684269
5 0.469428 1.084085
6 0.943740 1.728312
7 0.998636 3.727558
8 0.999919 6.727558
9 0.999994 11.727558
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BMK] (BMK2):
These data are listed below, in polar coordinates. (8 is in degrees.) Point numbers

in parentheses indicate which points of BMK1 constitute BMK2.

i 0 ri i 6; r;
1(1) 0. 4.582575 24 46. 3.774696
2 2. 4.581565 25 48. 3.717856
3 4, 4.578537 26(6) 50. 3.662133
4 6. 4.573497 27 52. 3.607701
5 8. 4.566457 28 54. 3.554702
6(2) 10. 4.557429 29 56. 3.503250
7 12. 4,546433 30 58. 3.453436
8 14. 4,533491 31(7) 60. 3.405328
9 16. 4.516018 32 62. 3.358977
10 18. 4.491610 33 64. 3.314416
11(¢(3) 20. 4.460876 34 66. 3.271665
12 22. 4.424473 35 68. 3.230735
13 24. 4.383080 36(8) 70. 3.191622
14 26. 4.337383 37 72. 3.154470
15 28. 4,.288056 38 74. 3.123414
16(4) 30. 4,235752 39 6. 3.099905
17 32. 4.181087 40 (9) 78. 3.083516
18 34. 4.124637 41 80. 3.073963
19 36. 4.066934 42 B2. 3.071082
20 38. 4.00845¢6 43(10) 84. 3.074826
21(5) 40. 3.949636 44 86. 3.085257
22 42. 3.890854 4t 88. 3.102553
23 44, 3.832444 46 (11) 90. 3.127017
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F. N. Fritsch

Figure Captions

Wilson-Fowler spline local coordinate system.
WF-spline through SIN2 data (default BC).
WF-spline through BMK2 data (default BC).

Ordinary cubic spline through FNF 4 data (default BC). (Note the drastically
different vertical scale than for Fig. 5-9.)

WEF-spline through FNF4 data (default BC).

PC-spline through FNF4 data (default BC; natural parametrization).
OUSN-spline through FNF4 data (default BC; natural parametrization).
PC-spline through FNF 4 data (default BC; WF parametrization).

OUSN-spline through FNF 4 data (default BC; WF parametrization).
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Figure 1. Wilson-Fowler spline local coordinate system.
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Curve and Data Points
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Figure 2 WF-spline through SIN2 data (default BC).
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Curve and Data Points
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Figure 3. WF-spline through BMK2 data (default BC).
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Curve ang Data Points

Figure 4. Ordinary cubic spline through FNF4 data (default BC).
(Note the drastically different vertical scale than for Fig. 5-9.)
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Curve and Data Points
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Figure 5. WF-spline through FNF 4 data (default BC).
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Curve 8ngo Data Points

Figure 6. PC-spline through FNF4 data

(default BC; natural parametrization).
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Curve and Dats Points
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Figure 7. OUSN-spline through FNF 4 data
(default BC; natural parametrization).
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Curve and Data Points

Figure 8. PC-spline through FNF 4 data (default BC; WF parametrization).
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Curve ang Data Points

Figure 9. OUSN-spline through FNF4 data (default BC; WF parametrization).
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Footnotes

* This work was performed under the auspices of the U. S. Department of Energy by
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. It was

supported in part by the Applied Mathematics Research Program, Office of Energy

Research.
1 These data are listed in the appendix.

2 This is the "natural” spline. (Simulations of vertical slope yielded astronomical energy

values.)

3 Could not compute spline: two data points have same x-coordinate.
4 The "natural” spline has smaller energy, also greater than the WF-spline.
5 This is the "natural” spline. (Default BC gave energy ca. 1.7x107.)

6 This is the "natural” spline. (Default BC gave energies in excess of 3000, due to a

nearly vertical end slope.)
7 Results identical to those for natural parametrization to all digits given.
8 This is possible, since the WF-spline is definitely not uniformly shaped.

9 In my early work, I referred to the WF-spline as the FW-spline, due to the order of the
authors in [FoWi66). WF is evidently the accepted order.



